
JOURNAL OF COMPUTATIONAL PHYSICS 49, 218-240 (1983) 

An Efficient Numerical Technique for the Solution 
of a Nonlinear Capillary Wave Problem 

TA-JO LIU* AND R. C. ACKERBERG 

Department of Chemical Engineering, Polytechnic Institute of New York, 
Brooklyn, New York 11201 

Received February 4, 1982 

Buneman’s block cyclic reduction method has been modified to solve a capillary wave 
problem which is characterized by a nonlinear boundary condition on the free surface. This 
technique requires an iterative solution of only the unknown boundary values along the free 
streamline. Once the free surface values are known, the remaining unknowns are determined 
directly. Comparisons of the numerical solutions with existing exact solutions demonstrate the 
accuracy and efficiency of this method for handling the nonlinear boundary condition. Some 
generalizations of the method have also been discussed. 

1. INTRODUCTION 

Several direct numerical techniques have been developed to solve the discretized 
Poisson’s equation in recent years. Among these, the direct solver which utilizes the 
block cyclic reduction method is considered to be one of the most efficient, since it 
requires the least storage and operation count [ 11. This method was first applied by 
Buneman [2] to solve Poisson’s equations with Dirichlet boundary conditions on a 
rectangle. Generalizations have been considered which deal with (1) different 
boundary conditions [3], (2) irregular domains [3-51, and (3) different coordinate 
systems [6, 71. An original restriction on the order of the matrices has been removed 
[B, 91. In addition to Poisson’s equations, this method can also be used to solve the 
biharmonic equation [5], separable [lo], and nonseparable [ 1 l] elliptic equations 
and even parabolic equations [12]. Some authors have suggested faster methods by 
combining the block cyclic reduction technique with the fast Fourier transform (FFT) 
method [ 13, 141 and with a marching technique (151. 

We observed that due to some special properties of the reduction process, this 
method can be modified to efficiently solve a capillary wave problem, which is 
characterized by a nonlinear boundary condition on the free surface. The technique 
developed here is superior to conventional finite-difference iterative methods in that 
only the unknown values on the free streamline are involved in the iteration. After 
convergence is achieved, the remaining unknowns are computed directly. An exact 
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solution of capillary waves on water of infinite depth was first derived by Crapper 
[ 161. Kinnersley [ 171 later extended Crapper’s approach to obtain exact solutions for 
capillary waves on water of finite depth. We shall compare our numerical solutions 
with the exact solutions obtained by Kinnersley to verify the accuracy of the method 
presented here. Recently, several researchers [ 19-221 have studied gravity-capillary 
waves by representing the free surfaces with various integro-differential equations, 
and solving the equations numerically. Bloor [ 191 reported on the computation of 
pure capillary waves on thin sheets of water using a truncated Fourier Series but no 
direct comparison was made with Kinnersley’s solution, although a comparison was 
made with Crapper’s solution for water of infinite depth. 

In Section 2, we formulate the capillary wave problem and present the exact 
solutions obtained by Kinnersley [ 171. The numerical procedure to solve the problem 
is given in Section 3. Comparisons of the numerical solutions with the exact solutions 
are made in Section 4. Finally, we discuss some generalizations of the method in 
Section 5. 

2. CAPILLARY WAVE PROBLEM WITH EXACT SOLUTION 

Figure 1 illustrates the fluid motion being considered: symmetric capillary waves 
move with phase velocity u,, to the right on the free surfaces of an ideal fluid sheet, 
and surface tension is assumed to be the only restoring force. If we introduce 
Cartesian coordinates (2, 7) moving with velocity u,, to the right with X measured to 
the right and 7 vertically upwards from the line of symmetry, the waves will appear 
to be steady. Due to the symmetry of the problem, we need only consider the flow 
region bounded by the line of symmetry and the free surface. 

The wave motion will be assumed irrotational, and we define the complex velocity 
potential ti = $ + ip and the complex velocity 

de - .- - -ie 
z=u-w=qe , where i = X + iy, 

and ii, V are the velocity components in the X, jj directions, respectively, 4 = 
(6’ + fly is the speed, and t9 is the deflection angle. The free boundary is a 
streamline which we can take to be tjj = 0 without loss of generality. If we denote the 

FIG. 1. Capillary waves on a thin fluid sheet. 
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line of symmetry (2 axis in Fig. 1) to be rji = -LuO, where L is one-half the thickness 
of the undisturbed fluid sheet, we can introduce the dimensionless variables 

2 = F/L, 14=Zi//uo, v=fT/u,, w = ~/(Lu,), 9 = 04J* (2) 

The flow region in the physical plane can be mapped into the w  plane with the 
correspondence shown in Fig. 2. 

Let T(w) be the logarithm of the dimensionless complex velocity, 

T(w) = ln(dw/dz) = Q@, w) - WA w>, where Q = In q, (3) 

Z(w) will be an analytic function of w  with Q, 8 related by the Cauchy-Riemann 
equations, i.e., 

aQ at9 3Q 30 -=-, -=--3 
By/ 84 84 w  

(4) 

and both Q and 13 will satisfy Laplace’s equation 

a'Q a2Q r3’8 8’8 =. 
-qT+aw’=qi+&jT- - 

The boundary conditions of the wave problem will now be discussed. 

a. Boundary Condition on the Free Streamline 

We apply Bernoulli’s equation on the free streamline w  = 0, i.e., 

r, + jpq2 = PO + @u& (6) 

where p is the constant fluid density. The fluid pressure p just inside the free surface 
and the constant pressure p,, of the surroundings are related by Laplace’s formula 

Line of symmetry 
$!=-I 

FIG. 2. The w plane. 
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Here T is the surface tension coefficient and R,= ff,/L is the nondimensional radius 
of curvature of the free streamline, i.e., 

ae ae 
R;+=q%, 

where ds is the differential arc length along the free streamline. If we substitute (7) 
and (8) into (6), we obtain after some manipulations, 

ad 
-=$(q-q-1) 
84 

on w=O, 

where a =puiL/T is the Weber number. Putting q = eQ and using (4), we find 

- = a sinh Q 
aw 

on w=O. 

b. Boundary Condition on the Line of Symmetry 

On the line of symmetry v = -1, the fluid deflection angle is constant, i.e., B = 0; 
hence N/ad = 0. Using (4), this yields 

aQ o -= 
aw 

on v=-1. 

c. Periodicity of Q in ,the w Plane 

It is shown in Appendix A that Q(#, w) is periodic with respect to 4. If the 
wavelength of Q in the w  plane is defined to be A, we can impose the periodic 
boundary condition, i.e., 

Q<h w) = Q@ + A, WI 

Collecting all the results, we have the nonlinear problem’ 

(12) 

a2Q a’Q o 

F+qF= ’ 
- 

aQ - = a sinh Q 
aw 

on w= 0, (13b) 

aQ 0 -= 
aw on w=-1, (13c) 

’ Note our nondimensionalization is different from that used by Crapper so that the Weber number a 
appears explicitly here in the nonlinear boundary condition (13b); thus v  varies from -1 to 0 for all 
values of a. 
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Q@v w) = Q(4 + 4 WI, -l<w<O, (134 

where S is an arbitrary constant. 
We should note that this problem is translationally invariant with respect to 4, and 

we may define the problem in the domain (-1 < v < 0, 0 < 4 < A). The nonlinear 
capillary wave problem is displayed in Fig. 3 and it can be verified that Q = 0 is a 
solution of the boundary value problem. However, when ,I satisfies a dispersion 
equation, to be derived later, there are also nontrivial solutions which we will 
determine using a numerical method. 

The derivation of an exact solution for the boundary value 
given in Appendix A; here we present the solution as follows: 

: problem in Fig. 3 is 

a=yK 
,2 sn(l’v K’) Cn(Y, K’) 

dn(?', K') ' 
(15) 

where sn, cn, and dn are the Jacobian elliptic functions in standard notation [ 181 and 
K is the modulus. Here y, which is proportional to the wave number, and the 
complementary modulus K' are related by dispersion formula (15). Moreover, y must 
satisfy the inequality 

0 < y < K’, (16) 

to prevent the denominator of (14) from vanishing. Here K’ is the complementary 
elliptic integral of the first kind. 

The period of the elliptic function s11 is 4K, where K is the elliptic integral of the 
first kind; thus we obtain from (14) 

y(# + A) - y$ = 4K. (17) 

Thus the wavelength ,I of Q in the w  plane is given by 

A = 4K/y. (18) 

FIG. 3. Nonlinear capillary wave problem. 
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3. NUMERICAL PROCEDURE TO SOLVE THE CAPILLARY WAVE PROBLEM 

To solve the capillary wave problem shown in Fig. 3 numerically, we introduce a 
grid on the rectangular domain by selecting two integers A4 and N and defining the 
grid sizes h = A/M, k = l/N, then 

pi = (i - l)h, i = 1, 2 ,..., M, 

vi=-1 +jk, j = 0, l)...) N. 
(19) 

The grid is shown in Fig. 4. Note that the rectangle defined by the solid lines is the 
domain of integration. 

Centered second-order differences will be used to approximate the derivatives. 
After discretizing Laplace’s equation with the standard five-point scheme, we obtain 

Qi,j- 1 + Qi,j+ 1 -2(l +u)Qi,j+u(Qi-,,j+ Qi+l,j)=O, 
i = 1, 2,..., M, j=O,l,..., N, 

(20) 

where u = (k/h)* and Qi,, is an approximation for Q(#i, vi). 
Boundary conditions (13b) and (13~) require 

Qi,N+ 1 = 2ak sinh Qi,N + Qi,N- i, i = 1, 2 ,..., M, CW 

Qt.-, = Qi.1, i = 1, 2 ,..., M, (21b) 

and the periodicity condition (13d) yields 

Q0.j = Q,w,j, j = 0, l)...) N, WC) 

Q M+ 1,j = Q,,jv j = 0, l)...) N. (214 

In (20), there are unknown values of Q which correspond to the points on the 
fictitious dotted lines shown in Fig. 4; these unknowns can be replaced by boundary 
and interior point values using (21). 

If we combine (20) and (21), after placing the nonlinear unknown terms arising 
from (21a) on the right-hand side, we obtain a system of equations which can be 
written in the matrix form 

B.Q=b, (22) 

where B is the (N + 1) X (N + 1) matrix of block tridiagonal form 

B= 

A 21 
I AI 

* . 

I A I 
21 A 

(23) 
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FIG. 4. Mesh for numerical integration. 

I is the M x M identity matrix, and A is the M X M matrix 

-2(1 + a) u 
(3 -2(1 + u) 

A= 
0 

u 

Q and b are vectors in partitioned form 

with 

Q,,j 
Q2.j 

Qj= 

ir 

i 9 
QM-1.j 
QM,j 

(3 

u 0 

i 

7 (24) 
u -2(1 +u) u 

U -2(1 + 0) 

b= 

b,, b,,..., b,-, are Mth-order null vectors and 

j = 0, l)..,, N, 

. 

(25) 

(26) 

(27) 
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Buneman’s algorithm has been explained in detail by Buzbee et cd. 131; here we 
note two important facts about this method. 

(i) If we want to solve (22) by Buneman’s algorithm, the reduction process will 
eliminate the unknowns systematically until only the middle vector Q2,,-, is left (here 
we assume N = 2”’ with m an integer for simplicity); thus QZm-, is always the first 
vector to be determined. 

(ii) During the process of reduction, all the right-hand side vectors 
corresponding to the reduced systems will be reconstructed; however, the middle 
vector b2,,-, does not influence the reconstruction of the other right-hand side vectors. 

If we want to take advantage of Buneman’s algorithm and solve (22) efficiently, it 
would be desirable to have Q,,, and bN located in the middle of the array. This can be 
achieved by reflecting all the vectors above QN to a position below it as shown in 
(28a): 

A 21 
IA I 

I ---__-- A 
--- 

, 
bo 
Ql 

-- -- 
Q, = 

61 
.Qo, 

, 
bo 
b, 

b, . 

b, 
b o> 

Pa) 

If we define the corresponding matrix and vectors in (28a) to be B’, Q’, and b’, 
respectively, then we have 

,‘.Q’=b’, (28b) 

and the order of the matrix B’ is (2N + 1). Now we solve the system of equations 
(28) by Buneman’s algorithm, noting that b, is the middle vector, and all the 
nonlinear terms in b, will not influence the other right-hand side vectors during the 
course of the reduction. 

To apply Buneman’s algorithm on (28), we will have to compute the sequence 
{pJ!l), qi’) }, j = 0, I,..., 2N + 1, r = 1, 2 ,..., m + 1. Due to the symmetry of system (28), 
the computation of (pjr), qj”} for j > N is not required. Moreover, all the right-hand 
side vectors in (28) are null vectors except b,; this implies that all (pjr), qj’)}, 
j = 0, l,..., N - 1, r = 1, 2 ,..., m are null vectors for this particular problem. Thus, we 
start the reduction directly by constructing {p$‘, qi’}, r = 1, 2,..., m + 1. Given an 
initial guess for Q,,,, say Qj,!“, we start by constructing {PC’, qg’}. The final equation 
of the reduction will be 

C(m+ “(Q, _ p;m+ 1)) = qim+ I), (29) 
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or 

where 

(30) 

p+l 
ccmt 1) = _ JG (A + 2 cos c$“+~)I), (31) 

and 

e!" t ‘) = jn/zm, 
J j = 1, 2 ,..., 2m+ ‘. (32) 

Since p? + ‘) and qp:“’ ‘) are functions of Q, , (‘I Eq. (30) can be written in the form 

QN = F(Qt”), (33) 

where 

F(Q;') = p$'+" + c(m+l)-' qhmt 1). (34) 

We solve (29) or (33) for QN, and once QN is known, denoting it by Q$‘, we may 
check if IIQi’ - Qt’II is less than a given tolerance. If the tolerance is met, all the 
remaining unknowns can be back-solved directly; if not, we replace Qr’ by Q$’ and 
repeat the process until convergence is achieved. 

There are several problems with the above algorithm, namely: 

(i) Placing the nonlinear unknown terms on the right-hand side of (22) implies 
that the nonlinear boundary condition is treated as a Neumann-type boundary 
condition; thus, the matrix B is formulated as if we were solving Laplace’s equation 
with Neumann and periodic boundary conditions. It is well known that such a matrix 
is singular. Moreover, B’ in (28) is also singular. The singular nature of B’ can be 
verified by choosing a vector e of the form 

- - eT = [e, e,..., elczNt 1), 
with 

eT = [ 1, l)...) llM, (36) 

and noting that 

B’ . e=O. (37) 

Thus any constant multiple of e is a nontrivial homogeneous solution of (28). 
(ii) We can not specify the phase of the capillary wave from the numerical 

formulation of problem (22) since it is translationally invariant; however, it is 
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desirable to fix the phase to make a comparison of the numerical solution with the 
known exact solution. 

(iii) Algorithm (33) ’ b is asically a fixed point iteration which may not converge 
since hyperbolic sines are involved in the nonlinear terms and they have large slopes. 

First, we consider the difftculties (i) and (ii) together. 
The necessary and sufficient condition for system (28) to have a solution is given 

by the Fredholm alternative [6], i.e., 

b IT . e = 0. (38) 

Since b& is the only nonzero forcing vector, (38) reduces to 

5 sinh Qi,,, = 0. 
i=l 

We should note that Green’s theorem requires 

(40) 

to obtain a source-free solution of Laplace’s equation. Carrying (40) out numerically 
by the trapezoidal rule for the problem formulated in Fig. 3 yields the same result 
(39). 

It is important to note that if a singular linear system of equations has solutions, 
the solutions will not be unique, for a new solution can be generated by adding a 
solution of the corresponding homogeneous system to an existing solution. However, 
the above statement is not valid for this particular wave problem because b’ in (28) 
depends on nonlinear unknown terms. Adding any constant multiple of e to an 
existing solution of (28) will not produce a new solution because (39) will not be 
satisfied. 

Owing to the fact that the nonlinear wave problem is translationally invariant with 
respect to 4, the numerical solution of (28) may have an infinite number of different 
phases depending on the initial guess Q,,, . (‘) However, the phase of the wave can be 
fixed by imposing a value Qi,N at a given point on the free streamline. The simplest 
choice and the one that makes the comparison of the exact solution with the 
numerical solution easiest, is to choose Q = 0 at the first grid point on the free 
streamline, i.e., Q,,N = 0. It is shown in Appendix B that once a numerical solution of 
(28) is obtained, it can be used to generate M- 1 additional solutions with different 
phases. 

The following procedure for solving the singular system (28) will indicate how the 
phase of the wave may be fixed, i.e., each time we perform the fixed point iteration 
(33), we will choose a vector Q$’ such that Q$’ is forced to satisfy (39) and to have 
a fixed phase. 

m/49/2-4 
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To show how the singularity in B’ is handled, we define 

and (31) yields 

G.~A+2cos@'+')I 
J J ’ 

cm+ 1) = _ 
J!J ‘j* 

Substituting (42) into (29), we obtain 

pi*’ 
n Gj(QN - pLmi l)) = -qim + I). 

j=l 

(41) 

(44 

(43) 

To solve (43), we put Z, = -qk’+” and repeatedly solve 

GjZj+,=Zj, j= 1, 2 ,..., 2m+‘, (44) 

for Zj, j > 1. Since G, is a matrix of nearly tridiagonal form with nonzero elements in 
the upper right and lower left corners, we adopt the rank-one method [23,24] to 
solve system (44). However, when we reach the last step of (44), i.e., j = 2”‘+‘, we 
find cos Ojm+‘) = 1, and from (4 1) 

G zm+l= A + 21 1454 
-20 u u 

u -20 u 0 
= - . 9 (45b) 

0 a -20 u 
U U -20 i 

which is a singular matrix. Therefore at the last step we must solve the singular 
system 

G Z p+l tm+L+ 1 - -Z2m+i, (46) 

where Z,,,,,,, , is defined as 

Z *m+,+, =Q;‘-p$“+l). (47) 

Substituting (47) into (46), we obtain after rearranging the equation 

G2,n+, Q$’ = z, (48) 

where 2 is defined as 

zm+l PN (m+l) + Zpt,, (49) 
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which is a known vector. The nonzero vector g defined in (36) is a solution of the 
equation 

Thus, the necessary and sufficient condition for (48) to have a solution is 

Z’e = 0. 

If we denote the elements of 2 to be 

then (51) requires 

f &I), 
iC* 

(51) 

(52) 

(53) 

for a solution to exist. 
As discussed previously, it is desirable to fix the phase of the wave by assigning a 

specific element of Q$’ to be zero for this problem. We shall choose the lirst element 
of Q$‘, Qi’,‘, to be zero. Once Q& is chosen, the solution of (48) will be unique and 
we can determine the solution in the following way: 

We multiply both sides of (48) by a nonsingular matrix [6] which is obtained by 
replacing the first row of the M x M identity matrix by the vector E. After performing 
the multiplication, we obtain a new system 

Gin,,, Q;’ = 2’, (54) 

where G&,,+, remains the same as G *,,,+, except the elements of the first row are zero, 
and 

2,*= 1 5 z,,z, )..., z, , 
i=l I 

VW 

= [O, z, )...) Z,], WI 
where we have used result (53). We can now delete the first equation of (54) and 
since Qf$ is fixed to be zero, we may also delete the first column of G&,,+, ; the 
remaining matrix is of tridiagonal form. Now the contracted system of order (M - 1) 
is no longer singular and we can solve for Q&, i = 2, 3,... M. 

To satisfy (39), while keeping the first element Qiv, equal to zero, we must choose 
a constant 6, such that 

M 
c sinh(Q& + 6) = 0. 
i=2 

(56) 
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After 6 is determined from (56), we add 6 to Q$, i = 2, 3,..., M while keeping Q\t’, 
zero, The new Qj,!’ is forced to satisfy (39) and the phase of the wave has been fixed 
since the first element Q:!‘, is zero. Therefore, we have removed difficulties (i) and 
(ii). 

The remaining difficulty (iii) can be handled by applying Newton’s method to 
accelerate the convergence of (33). Using (33), we define 

H(QJ = QN - F(Q,) = 0. (57) 

Applying Newton’s method, we obtain the following equation 

JH(Q$) - Q;‘) = -H(Q;‘) = F(Q$‘) - Q$‘, 

where J, is the Jacobian matrix, defined as 

J H E aHj(Q,v) _ I _ aFj(Qr+) 
8Qi.M - 8Qi.N ' 

(58) 

(59) 

and I is the M x it4 identity matrix. Since we do not have an explicit expression for 
F(QN), we have to approximate the Jacobian matrix numerically. 

First we choose an appropriate initial guess Qr’ to perform the fixed point 
iteration (33) as discussed above and obtain QN . w  Next we add a small number E to 
each of the elements of Qj,? and repeat (33) to obtain 

QN(i, E) = F(Q\“a, QFX,..., Qj$ + s,..., Q&l (60) 

The ith column on the Jacobian matrix is computed as 

J,,i = Ii - c-‘(QN(i, E) - Qf), (61) 

where Ii is the ith column of the identity matrix I. 
After we obtain the Jacobian matrix, we solve (58) for Qg’. If IIQc’ - Qt’II is 

smaller than a given tolerance, which we chose to be 1.0 x lo-” for all cases, we 
back solve for the remaining unknowns; if not, we replace Q$’ by QF’ and repeat the 
iteration procedure. The back substitution process is straightforward, and the reader 
may refer to Buzbee et al. [3] and Liu [24]. 

Since Newton’s method requires considerable computer time to evaluate the 
Jacobian matrix, we computed the Jacobian matrix once and then used a method 
proposed by Broyden [24,25] to update the Jacobian matrix. This procedure has 
proven to be very successful. 

We summarize our numerical algorithm as follows: 

(1) Given the initial guess Qc’, compute p$‘, q,$“, r = 1,2,..., m + 1. 
(2) Perform the fixed point iteration (33) to obtain Qi’. 
(3) Construct the Jacobian matrix using (60) and (61). 

(4) Solve (58) for Qt’. 
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(5) Check convergence. If the tolerance is met, go to (8) below; otherwise 
continue as follows: 

(6) Update the Jacobian matrix by Broyden’s method. 

(7) Replace Qg’ by Qc’, repeat (11, (2), (4), ad (0 
(8) Back-solve directly for the remaining unknowns. 

4. COMPARISON OF NUMERICAL SOLUTION WITH EXACT SOLUTION 

We chose two cases for comparison; one case corresponds to long waves and the 
other to short waves. The variables for these two cases satisfy (15) and are specified 
as 

Case I: long waves a = 0.7239937, u = 0.3, A= 6. 

Case II: short waves a = 11.801483, K = 1.0 X lo-“, L = 0.45. 

To avoid the trivial solution, Q = 0, the intial guess for Q, cannot be very small, or 
the zero solution will result. An initial guess of magnitude one is recommended. 
Attempts were also made to choose some arbitrary wavelengths L for Cases I and II 
such that dispersion relation (15) is not satisfied; however, only trivial solutions were 
obtained in those cases, as expected. 

For each case, we chose two sets of mesh sizes (h, k), so that we could perform a 
Richardson’s extrapolation to obtain solutions with fourth-order accuracy. The 
computations were performed on an IBM 360/65 machine with double precision 
arithmetic. The exact solution of these two cases can be computed using (14). Since 
the wave is symmetric, we only present the results of a quarter wavelength on the free 
surfaces. The comparisons for Cases I and II are shown in Tables I and II, respec- 
tively. Numerical results for the long waves are very accurate while for the short 
waves, the errors are larger than expected. In the latter cases the amplitude of Q is 
not small and the wavelength is extremely short, so that the larger errors are due to 
the steepness of the wave; thus, the truncated fourth-order derivatives are not 
insignificant compared with the errors 0(/z*, k*). Nevertheless, the ratio of errors 
(D,/D,) still remains almost 4 for every point when the mesh sizes are reduced by a 
factor of two. 

It is also interesting to compare the rate of convergence and the computation times 
of Newton’s method and Broyden’s method. With all the parameters specified as in 
Case I-l (see Table I), we made two computations using these different methods. Both 
methods gave identical numerical solutions. Since Newton’s method should have a 
quadratic rate of convergence, we can check the values off,, such that 

E n+1= f,& (62) 

where E, is the error of the nth iteration measured from the final frozen value. We 
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took one point on the free streamline from Table I for the comparison, and the 
numerical results are shown in Table III. 

We observe that Newton’s method does indicate a quadratic rate of convergence. 
In this example, there are 270 unknowns in the grid. The 30 points which are on the 
free streamline are determined by the iteration while the remaining 240 points are 
back-solved directly. Although Broyden’s method requires more iterations, it uses 
considerably less computing time. Newton’s method required 80 set of CPU time 
while Broyden’s method required 29 set of CPU time. 

5. CONCLUSION 

Numerical solutions of elliptic partial differential equations with nonlinear 
boundary conditions using finite difference methods are rarely found in the literature. 
Our development offers an accurate and efficient method to solve Laplace’s equation 
with a nonlinear boundary condition. The discretized system of the capillary wave 
problem can be reduced to a set of nonlinear algebraic equations involving unknowns 
only on the nonlinear boundary line. Newton’s method is used to determine the 
unknowns and the remaining boundary and interior points are determined directly. 
This method has also been applied to solve the two-dimensional potential flow of a jet 
emanating from a slot with surface tension effects taken into account [26]. In this 
case we must handle a split boundary condition, i.e., the normal derivative is 
specified in two parts on an infinite line, with one part being nonlinear. 

Some generalizations of our method are presented here. 

(i) The method is applicable to a nonlinear boundary condition on one side of 
a rectangular domain which has the form aQ/&r =f(Q), where f is any nonlinear 
function of Q. Here we considered the special casef(Q) = a sinh Q (see Eq. (13b)). 

(ii) Owing to the special properties of the block cyclic reduction method, it is 
possible to solve a linear partial differential equation with two nonlinear boundary 
conditions on opposite sides of a rectangular domain. To be specific, consider the 
wave problem in this paper but with boundary condition (13~) replaced with a 
nonlinear boundary condition of the form aQ/an = g(Q), which might correspond to 
another free surface. After discretizing the governing equations and placing the 
nonlinear terms on the right-hand side, a new system (22) is obtained, similar to the 
previous system except b, now depends on the unknown elements QO. We reflect the 
system as before and perform the reduction on (28). In this case we stop the 
reduction process one step before the final result (29), to obtain three equations 
resulting from the first, middle, and last equation of the array (28). The first and last 
equations will be identical due to the reflection. Thus, we have two equations 
involving the unknowns Q0 and Q,. It should be noted that the values of b, and b, 
do not enter into the reconstruction of any of the other right-hand side vectors during 
the reduction process and thus the final two equations can be solved iteratively for Q0 
and Q,. Once convergence is achieved, the remaining unknowns are computed 
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directly as in the previous case. This method fails if the two nonlinear boundary 
conditions are located on two adjacent sides of a rectangular domain. 

(iii) Swarztrauber [lo] has extended the block cyclic reduction method to 
solve separable elliptic equations. Since his method retains the special properties of 
the block cyclic reduction method discussed in Section 3, it should be possible to 
solve linear separable elliptic equations with nonlinear boundary conditions using the 
techniques developed in this paper. 

APPENDIX A: DERIVATION OF AN EXACT SOLUTION 
FOR THE CAPILLARY WAVE PROBLEM 

Consider the nonlinear capillary wave problem shown in Fig. 3: 

a*Q a*Q =. 
-qT+ayl' ' - 

- = 01 sinh Q 
aw 

on y=O, 

aQ-, F- on w=-1, 

@‘lb) 

QW w) = Q(#J + 4 wX -l<w<O. (Al4 

An exact solution for capillary waves on a fluid of infinite depth was first derived by 
Crapper [ 161. In his case, boundary condition (Ale) is replaced by 

Q-O as w+-OZ. (4 

Crapper assumed that Q satisfied the condition 

z = f(w) sinh Q, (A3) 

for all (4, I,u). This leads to a solution involving only elementary trigonometric 
functions. Later Kinnersley [ 171 solved problem (Al) for finite fluid depths using the 
same assumption (A3). If we substitute (A3) into (Alb) and (Ale), we find 

f (0) = Q, (A44 

f(-l)=O. (A4b) 

We can integrate (A3) to obtain 

ln tanh(Q/2) = f’(y) + G(4), (4 
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where 

and G($) is arbitrary; thus 

Q = In 
I 
1 + Jx$) Y(w) 

I 1 - a#> Y(v) ’ 

Q-46) 

where 

X(#) = eG(Q), WI 

Y(Iy) = eF(@). (A9) 

After substituting (A7) into (Ala), we find that X(4) and Y(w) must satisfy the two 
nonlinear differential equations 

(am2 =--a, - a$*(4 - a,X”(O, WO) 

PW’ = a3 + a2 Y’(v) + Q, y”t!h (All) 

where a,, a,, and u3 are constants. The solutions of (AlO) and (Al 1) are expressible 
in terms of elliptic functions. 

To fix ideas, consider the case where Q is small resulting from X(4) Y(v) being 
small; we can approximate Q from (A7) by 

Q - zu(#) Y(v) for .X(4) Y(w) + 0. 6412) 

We differentiate (AlO) to obtain 

X”(#) = -u,X(d) - 2u,X3(#). (A13) 

Assuming X(4) is small, we can neglect the cubic term in (A 13), and a, must be 
positive to obtain a solution which is bounded and periodic. To obtain real solutions 
for -W> and Y(w), a,, a,, and u3 cannot all have the same sign. With these 
restrictions we limit our choices of a,, a,, and u3 to three, which are 

Case I: u,<o, u,>o, u,>o, 

Case II: UI >o, a, > 0, u3 < 0, 
Case III: a, < 0, u2 > 0, u3 < 0. 

After analyzing the three cases, we find that only Case I yields satisfactory solutions. 
The exact solution is given in (14). Substituting (14) into (A3) and (A4), we obtain 
dispersion formula (I 5). 
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APPENDIX B: GENERATION OF NEW SOLUTIONS FROM THE 
EXISTING SOLUTION OF Ed. 

Equation (28) can be rearranged in the form 

B’. QL&, 

where B’ is the M x M block matrix of the following form 

(Bl) 

gj’ = 3 P) 

? is the (2N+ 1) x (2N + 1) identity matrix and A is the (2N t 1) X (2N + 1) 
tradiagonal matrix 

-2(1 t a) 

i 

2 

1 -2(1 f u) 1 
A= * . * . (B3) 

1 -2(1 tu) 
2 

0’ and b’ are vectors in partitioned form 

(B4) 

and 

, I= 1, 2 ,..., M. P5) 

We note that the vector 0, now consists of all the unknowns on the gridline # = 4, in 
Fig. 4. 
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Suppose 0’ = [Q,, &,..., Q,] is a solution of (B.1). We define a new vector 0 as 

= [Q,, 63,..., Qw, @I. (B6b) 

Thus, Q is obtained by permuting the vectors of 0 once; physically this means that 0 
differs from 0 by the phase factor A#. 

If we substitute 0 into (Bl) we find that 0 is also a solution of (Bl) because the 
system of equations 

jj’. Q=& (B7) 

where &’ = [6,, 6, ,..., 6,, 6,], is identical to B’ . Q = 6, the only difference being that 
the equations appear in a different sequence. Similarly, we can continue to cyclically 
permute the vectors of 0 to generate additional solutions with different phases. In 
general, if there are M grid points in the 4 direction, we can generate (M- 1) 
different solutions from a known solution, and each solution differs in phase from the 
known solution by a multiple of the phase factor A$ = 1/M. 
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